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(1)  Forward 
 
 
 

 
   This is the final report on ARO grant DAAD 19-00-1-0559 titled 
“Streaming Video Compression for Heterogeneous Networks” and 
dated 1 October 2000 - 31 December 2003.  We present a review of 
our activities during this three-year project, which treats robust 
video transmission of compressed video and focuses on highly 
scalable video compression combined with FEC and intelligent 
buffer management. In the latter part of the grant, we interacted with 
the international video standards group MPEG on the establishment 
of a robust scalable video coder (SVC) standard. 
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(3) Statement of Problem Studied 

 
 

 
 
This is the final report on ARO grant DAAD 19-00-1-0559 titled “Streaming Video Compression for 
Heterogeneous Networks” and dated 1 October 2000 - 31 December 2003.  We present a review of our 
activities during this three-year project, which treats robust video transmission of compressed video and 
focuses on highly scalable video compression combined with FEC and intelligent buffer management. In 
the latter part of the grant, we interacted with the international video standards group MPEG on the 
establishment of a robust scalable video coder (SVC) standard. 
 
This report starts with a review of scalable video coding.  Then we concentrate on robust versions of the 
coded data that are able to withstand packet loss.  We first consider dispersive packetization (DP) and 
provide some intraframe video coding simulation results.  This is followed by interframe coding results 
using the same technique, which is a form of multiple description (MD) coding.  Section 4 then 
introduces FEC into our multiple description (dispersive packetization) coding and we find a significant 
advantage for DP in the channel mismatch case.  The next section features the interaction of video coding 
with networks and introduces an improved transfer control protocol incorporating randomness in packet 
sending times. 
 
Then we consider source buffer management and show here that a relatively simple scheme can reduce 
packet losses in a wired network to small amounts, by following network recommended sending rates.  
While we use a standard H.26L video coder here, the more scalability that a video coder possesses, the 
more adaptability it has to network congestion.  This is followed by work on using motion compensation 
to add robustness by using the high quality motion information in our scalable coder MC-EZBC to 
perform error concealment on GOPs with a lot of missing packets.  We thus show that, contrary to 
common belief, motion compensated interframe coding can be more robust than intraframe coding that 
does not use motion. 
 
Hybrid video streaming is considered next in a peer-to-peer context, where local neighbors are poled to 
determine if video information is locally available, thus lowering the load on a network video server.  
Again here, in a highly scalable video coder all the information is contained in ‘atoms.’  Hence any 
information found locally can be used, and only a minimum of information will have to be shipped down 
the net from the server.    There is a section on our work with the MPEG network simulation testbed and 
our response to their call for evidence in robust scalable coding.  Network path aggregation is considered 
in a final section, wherein improved streaming stability is obtained by efficiently using more than one 
path for sending the packets.  With our out-of-sequence transmission approach, high latency paths can be 
used to advantage. 
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(5) Summary of Most Important Results 
 
 

1. Scalable video coding 
 
Motion compensated video typically consists of several types of data, e.g. motion vectors, frame 
prediction residuals and possibly some overhead information, such as quantizer data. The structure of the 
group of pictures (GOP) of the motion compensated 3-D subband/wavelet video coder from [1] is shown 
in Fig. 1. The top level represents the video at full frame rate. Neighboring frames are decomposed using 
a motion-compensated filter bank to produce temporal low frequency bands (solid lines) and temporal 
high frequency bands (dashed lines) at the next lower level. Motion vectors are symbolically shown as 
arrows. Low frequency bands are effectively the motion compensated average of the two neighboring 
frames at full frame rate, so they occur at half frame rate. The process is repeated once again to obtain the 
next lower level (quarter frame rate). In the coder of [1], four neighboring temporal low frequency bands 
at this lowest level are encoded using motion-compensated temporal DPCM. 
 

 
 

Fig. 1  Early 3-D subband/wavelet coder with GOP=4 frames and hybrid coder base layer. 
 
The structure of the data produced by this coder is naturally divided into three layers. Layer (1) represents 
the data needed to reconstruct the video at one quarter of the original frame rate. Layer (2) is the 
enhancement that needs to be added to layer (1) for reconstruction at half the original frame rate. Finally, 
layer (3) is the enhancement needed for reconstruction at the full frame rate. Looking along the temporal 
axis, one can notice that within each layer the structure of data is a shuffled sequence of frame prediction 
residuals and motion vectors. 
 
The coder from [2] extends the GOP structure to 16 frames, enabling five levels of temporal scalability. 
This is shown in Fig. 2. Here we have five layers of data, from layer (1) at 1/16 of the original frame rate, 
to layer (5) the final enhancement needed full frame-rate video. Again, along the temporal axis, all layers 
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(except layer (1)) are represented by a shuffled sequence of frame residuals and motion vectors. In this 
coder, layer (1) does not contain motion vectors, since it is not encoded using MC temporal DPCM. In 
early experiments we used the version of this coder with bi-directional motion compensation [3]. 
 

 
 

Fig. 2   3D subband/wavelet coder with GOP=16 frames and no hybrid coder base layer. 
 
 

2.  Dispersive packetization 
 
Packetization of the motion compensated scalable video can be accomplished in the following way. Given 
the desired rate, we first determine the number of bits per GOP. To maximize the packet payload-to-
header ratio, we want to create packets that are about 576 Bytes long (this is the largest packet length 
guaranteed not to be fragmented during Internet transmission). From these parameters we determine the 
required number of packets per GOP, and hence the number of packets per layer within a GOP. Within 
each layer, we perform dispersive packetization in 3-dimensions. The set of 3-D packetization masks is 
obtained starting from one basic 2-D packetization mask, which is repeated, in the temporal direction 
throughout the GOP. We have recently developed a good method for design of 2-D packetization masks 
based on lattice partitioning [4]. 
 
Within each layer, packets are made to be approximately equally important. This was previously found to 
be necessary to minimize the variation in received video quality. Equally important packets all contain 
both motion vectors and portions of frame prediction residuals, and data within the packet is dispersed 
across space, time and frequency. Additionally, there are several header packets per GOP, containing 
motion vector maps and quantization parameters. The size of these header packets depends on the 
encoding rate. In our simulations, the total size was 1-2 K Bytes per layer. During simulation, header 
packets are assumed to be correctly received. In practice we may need to retransmit these packets should 
they be lost, or simply send multiple copies of them at-a-time to increase the chance of correct delivery to 
the receiver. 
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When a packet is lost, all pieces of information it contained (i.e. subband coefficients and motion vectors) 
will have a large number of neighbors available (in space, time, and frequency), due to dispersive 
packetization. This enables us to perform various types of error concealment to approximately recover 
lost information. In the set of simulations described below, we used median interpolation to recover lost 
coefficients in the frame residuals, which showed very good results. Lost motion vectors are assumed to 
be zero, i.e. at this stage no concealment is applied to lost motion vectors. We also found that vector 
median filtering offered improved good performance for this purpose.  
 

Simulation Results 
 
In this early experiment we examined the effect of error concealment on the video bitstream affected by 
the packet loss. Here we used robust version of the coder from [1] (MC3D-SBC-FSSQ) to encode and 
dispersively packetize the mobile calendar sequence (color, SIF resolution, 30 fps) at the rate of  350 
Kbps. We introduced a 33 % random packet loss in each of the three layers of video in the first GOP, and 
then reconstructed the full frame-rate video from available packets. Median interpolation from nearest 
available neighbors was used to conceal the loss in frame prediction residuals. Lost motion vectors were 
assumed to be zero (i.e. no concealment). Results are summarized in Table 1 and illustrated Fig. 3. 
 

First 16 frames Average PSNR (dB) 

No loss 19.75 
DP + concealment 16.97 
DP, no concealment 10.36 

 
Table 1  PSNR evaluation of dispersive packetization (DP) 

 
As can be seen from Fig. 3, loss occurs in the first GOP and the error propagates through the next three 
GOPs due to temporal DPCM used at the base level in this coder. Resynchronization occurs at the start of 
the fourth GOP. Results show that the error concealment gain is about 6.5 dB in the areas affected by 
packet loss.  In a second experiment we investigated the variation of the reconstructed video quality as the 
link capacity changes. The basis of this experiment is the coder from [3] (BiMC3D-SBC). We use its 
robust version (P-BiMC3D-SBC) to encode and dispersively packetize the mobile calendar sequence 
(color, SIF resolution, 30 fps) at about 415 Kbps. The error concealment procedure is the same as in the 
first experiment. 
 
Transmission of the packetized video was simulated using UC Berkeley’s ns-2. Two types of links were 
considered: one based on a 10 Mbps bottleneck and the other based on a 1Mbps bottleneck. In both cases 
our video stream competes against TCP traffic. Results are shown in Table 2 and Figs. 4 and 5. Video 
streams produced by our P-BiMC3D-SBC coder consist of five layers (Fig. 2), but for simplicity we show 
the aggregate packet loss, not the loss divided among the layers. Most of the loss, however, occurs in 
layer (1), since this layer accounts for almost half the packets. 
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Fig. 3  Gain in PSNR and packet loss versus frame number. 

 
 
 
 

Coding method Average PSNR (dB) Average packet loss (%)
BiMC3D-SBC 22.32  
P-BiMC3D-SBC (no loss) 20.21  
P-BiMC3D-SBC, 10Mbps 19.34 3.4 % 
P-BiMC3D-SBC, 1Mbps 19.07 5.9 % 

 
Table 2  Achieved PSNRs versus percent packet loss. 

 
 
One can see that at very low bit rates (415 Kbps), modifications introduced into the coder to enable 
dispersive packetization resulted in a loss of about 2 dB. This loss mostly depends on the coding method 
used for coding the frame residuals, which is FSSQ [5] in this case. It could be reduced by using different 
coding methods (e.g. EZBC [9]). Also, the loss is expected to be smaller at higher bit rates.  Simulated 
video transmission through the 10 Mbps bottleneck resulted in 3.4 % aggregate packet loss, which 
induced about 0.9 dB loss in PSNR. When the link capacity was reduced to 1 Mbps, the loss rose to 5.9 
%, which reduced reconstructed video quality by additional 0.3 dB. Video quality degraded gracefully 
with packet loss increase.  
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Fig. 4  P-BiMC3D-SBC performance with 10 Mbps bottleneck versus frame number. 

 
 

 
Fig. 5 P-BiMC3D-SBC performance with 1 Mbps bottleneck versus frame number. 

 
 
Portions of the video clips from this experiment can be seen at the web site [6]. 
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3. Domain-based Multiple Description Coding of Video 
 
Following upon our work on dispersive packetization (DP) of images and intraframe-coded video [7], we 
developed a robust motion compensated 3-D subband video coder [8,9]. Robustness is achieved by 
partitioning the domain of the video signal in such a way that missing pieces of the data (subband samples 
or motion vectors) are likely to have many available neighbors that are used for error concealment at the 
decoder. The details of domain partitioning are discussed in [21]. Due to the fact that packets 
(descriptions) are created by partitioning the domain of the signal, we also refer to this process as domain-
based multiple description (MD) coding. 
 
As mentioned earlier, in our coder video data are divided into frame rate scalability layers – the base layer 
provides the video at the lowest frame rate (currently 1/16 of the original frame rate), while the other 
layers provide enhancement for higher frame rates (1/8, 1/4 and 1/2 of the original frame rate). To enable 
scalability, each layer is packetized independently so that the video at a lower frame rate can be 
reconstructed from subsets of packets corresponding to a higher frame rate. Within each layer, data is 
coded and packetized in a dispersive manner, so that subband samples from any given space-time-
frequency neighborhood appear in different packets, which enables good error concealment of lost 
samples from the available neighboring samples. Also, all the packets from a given layer carry 
approximately the same amount of information about every frame in that layer, which minimizes the 
variation of video quality at a fixed packet-loss rate. It was found that this dispersive packetization 
approach to robust coding effectively combats the packet loss and eliminates the need for forward error 
correction (FEC) at packet-loss rates up to several percent. Performance at higher loss rates can be further 
improved through the use of FEC, or by intelligent buffer management strategies described later in this 
report. 
 
To evaluate the performance of our dispersive packetization scheme, we compared it to the interleaved 
slice-based packetization (SP) scheme that is part of the H.323 recommendation for packet-lossy 
environments. In both cases we used the same algorithm for error concealment of missing data – median 
filtering for missing subband samples and vector median filtering for missing motion vectors. Results of 
three groups of experiments are reported here. The first group (experiments 1 and 2) is based on the 
Mobile calendar sequence encoded at 0.45 Mbps with a GOP of 16 frames and the average PSNR of 22.3 
dB. The second group (experiments 3 and 4) is based on the Football sequence encoded at 0.97 Mbps 
with a GOP of 4 frames and average PSNR of 26.3 dB. The third group (experiments 5 and 6) is based on 
the Table tennis sequence encoded at 0.94 Mbps with a GOP of 16 frames and average PSNR of 31.4 dB. 
All sequences were grayscale, SIF resolution, at 30 fps. Average PSNR results are summarized in Table 
3.  
 

Experiment Avg. packet loss PSNR for SP PSNR for DP Gain of DP over SP 
1 8.2% 18.9 dB 19.7 dB +0.8 dB 
2 12.4% 17.8 dB 19.1 dB +1.3 dB 
3 5.4% 24.0 dB 24.6 dB +0.6 dB 
4 10.4% 21.8 dB 23.2 dB +1.4 dB 
5 9.2% 23.5 dB 25.7 dB +2.2 dB 
6 16.0% 20.0 dB 22.8 dB +2.8 dB 

 
Table 3:  Average PSNR results comparison of DP versus SP. 
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We notice that DP has the PSNR advantage over SP for all the experiments, with the greatest advantage 
+2.8 dB at the highest average packet loss rate.  It is also important to realize that the DP decoded frames 
tend not to have the washed out areas present in SP decoded ones.  Instead, there is a much more uniform 
loss across the entire frame and sequence.  This visibility advantage is in addition to the just mentioned 
0.6-2.8 dB objective advantage.  Very simple error concealment schemes were used to provide estimates 
of missing image and motion data.  We are continuing this work by looking at more powerful methods to 
restore the missing data.  These methods should result in improved subjective performance for the DP 
approach.  Figure 6 shows a frame-by-frame PSNR plot from experiment 4. 
 
 

 
Fig. 6: PNSR plot from experiment 4 comparing PSNR performance DP and SP. 

 
 

4. Concatenated Multiple Description Coding of Video 
 
In concatenated channel coding, the idea is to combine two codes with different error correcting 
capabilities to produce a more powerful code. Following this intuitive approach, we have combined our 
dispersive packetization (DP) with FEC-based multiple descriptions [22]. As shown in Figure 7a (left), 
DP represents the outer code, while the FEC is introduced by applying a Reed-Solomon code as the inner 
code. In this way, portions of the video stream, which cannot be recovered by FEC, are estimated by error 
concealment. Details are given in [25,31]. 
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Fig. 7a:  Concatenated multiple description coding                   Fig. 7b:  Application of FEC to packets 

 
The process of applying FEC is illustrated in Figure 7b (right).  The dispersively packetized video is 
divided into segments and different sections receive different amounts of FEC, according to their 
importance.  More important sections contain the data corresponding to the lower frame rates. In Figure 
7b, section 1 is protected by the (4,2) RS code, section 2 by the (4,3) RS code, and section 3 is 
unprotected.   Each description is mapped to a reasonable sized packet to avoid possible fragmentation.  
 
We illustrate the operation of a concatenated MD system by example.  With reference to Figure 7b, 
suppose that four out of the twelve segments are lost, as shown in Figure 7c. In this case segment 4 is in 
section 1 which is protected by the (4,2) RS code, so it can be recovered by FEC.  Similarly, segment 5 in 
section 2 is protected by the (4,3) RS code, and can be recovered by FEC.  Segments 3 and 6 in section 3 
cannot be recovered.  Hence, segment 3 is approximately recovered by error concealment using the data 
from other segments in layer 2, while segment 6 is approximately recovered from the other segments in 
layer 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7c:  Illustration of segment loss scenario 
 
 

Figure 8 shows comparisons of the performance of the concatenated MD system with its component 
systems. In one case (labeled EC), we use the total rate budget for source coding and apply error 
concealment to recover the missing data. In the other case (labeled FEC), we assign an appropriate 
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amount of FEC (for the given network packet loss rate p), so that the source coding rate plus the channel 
coding rate are within the total rate budget, and use only the FEC at the receiver to recover the missing 
data. The third case (labeled FEC+EC) is a combination of FEC and error concealment. Figure 8a (left) 
shows the performance in the case when perfect channel-state information is available (i.e. the correct 
value of p is known in advance). Figure 8b (right) shows the performance in the case of a mismatch 
between the assumed value of p and the actual value of p (the figure shows what happens when FEC is 
designed for p = 0.09 while the actual p varies). As the results show, concatenated system significantly 
outperforms its component systems at higher loss rates, and also shows increased robustness in the case of 
a channel-state mismatch. 
 

     
Fig. 8a:  PSNR versus percent packet loss        Fig. 8b:  PSNR in channel mismatch case 

 
 
 

5.  Robust video over the Internet 
 
The networking aspects of the ARO-funded research program focused on three topics:  
 

1. Application-level congestion management issues for video-transmission over the Internet. This 
work is divided into two parts: randomized TCP congestion control, and source-buffer-
management protocols. 

2. A new hybrid download-streaming paradigm that blends aspects of "download" and "streaming"  
to provide enhanced video delivery capabilities in emerging overlay and peer-to-peer networking 
contexts. 

3. Exploratory research activity in the area of leveraging massive path diversity through a 
combination of end-to-end delay compensation and FEC techniques. 

 
Traditionally Internet video applications run over transport layer protocols such as RTP and UDP. These 
off-the-shelf network protocols do not specify congestion control, i.e., mechanisms that adapt the sending 
rate in response to loss or other congestion indications from the network. The issue of congestion control 
for video poses an important dilemma. Congestion control results in rate-adaptation and indeed lower 
rates during periods of high packet loss. This is a challenge for video coding schemes, which then have to 
handle both  
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a) variable and lower rates and 
b) be robust to higher packet loss rates!  

 
At the same time, without congestion control, it is possible to have congestion collapse, network 
instabilities and beat-down of competing TCP flows - an undesirable scenario. The requirement to avoid 
network instability and provide TCP-friendliness has to be balanced against the end-to-end performance 
demands of video applications. The investigation of this dynamic tradeoff of video over the best-effort 
Internet was a core focus of the project.  
 
The strategy we chose is to equip the end-system with middleware to provide TCP-friendly congestion 
control, and services like adaptive packetization, adaptive packet marking, relatively smooth transmission 
rate, randomized transmission (to tackle network synchronization issues) and source buffer management.  
Further, the strategy increases the amount of "channel" specific information available to source coding 
and error-concealment schemes. Such mechanisms maximize application-perceived performance and 
provide graceful degradation of performance under congested conditions. It complements joint source-
channel coding approaches like UEP (unequal FEC error protection), error concealment, and efficient 
source coding. The approach is illustrated in Fig. 9.  
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the first year of the program, we built and evaluated several alternatives for the congestion 
management piece of the end-to-end architecture. We evaluated the additive increase/multiplicative 
decrease (AIMD) scheme against the recently developed TCP Friendly Rate Control scheme (TFRC) [10] 
and the binomial increase/decrease algorithms [11,16]. These are considered to be important algorithms 
that could potentially be used to control video transmission over the Internet. In particular, they display 
lower volatility compared to the TCP AIMD algorithm, while aiming to be friendly to the installed base 
of TCP congestion control. 

                Fig. 9: End-to-End Protocol Support for Video over the Internet 
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We studied these algorithms carefully and developed new randomized versions of these algorithms, that 
have special benefits when operating over drop-tail FIFO queues like those widely deployed in the 
Internet today. This performance analysis has led us to a better understanding of the right type of 
algorithms to choose for controlling video transmission over the Internet. These results have been 
reported in a paper accepted for publication [15]. We discuss the randomization solution below. 

Current implementations of TCP and similar congestion control schemes suffer from serious performance 
problems like unfairness to flows with higher round trip times (RTTs), synchronization and phase effects 
in flows and correlated losses, leading to throughput degradations under a wide range of scenarios. We 
proposed a solution to these issues by randomizing the packet sending times at TCP sources (called 
Randomized TCP). Specifically, we space successive packet transmissions with a time interval Delta = 
RTT(1+x)/cwnd, where x is a zero mean random number drawn from a Uniform distribution. We found 
that a Uniform distribution on U[-1,1] is near optimal with respect to metrics like throughput, fairness, 
timeouts, losses, and de-synchronization. We showed that the scheme is better than Paced TCP (another 
variant of TCP) as well as TCP Reno (the traditional TCP implementation) in a large number of test 
scenarios. The proposed scheme is also fair with TCP Reno. We showed through simple simulations that 
Randomized TCP reduces phase effects and synchronization even when multiplexed with TCP Reno. 
Also, we extended randomization to other window-based schemes like the family of binomial schemes 
and showed that their fairness to TCP Reno increases dramatically even over traditional drop-tail queues 
inside the network.  

 

5.1 Performance analysis of randomized TCP congestion control 
 
Figure 10 shows the topology that was used for the simulations to study the behavior of various 
congestion control schemes. It consists of N sources and N receivers. Schemes are compared pair-wise.  
We deploy one scheme on half the senders (i.e. on N/2 flows) and compare it against a competing scheme 
that is deployed on the remaining half of the senders (N/2 flows). The link between the two routers is the 
bottleneck, typically running at 1 Mbps or 10 Mbps depending upon the simulation. 
 
 
 
       S1               D1 
 
       S2                        Router      Router       D2 
          
        
 
       Sn                                    Dn 
 

Fig. 10: Topology used for simulation-based comparison of congestion schemes 
 
 

In our simulation results, we observe that for medium-low speed bottlenecks with drop-tail queuing the 
TFRC scheme behaves very unpredictably and in an unfair manner when competing with TCP [15,16]. 
Similar results are seen (though to a lesser degree) when alternative increase/decrease (binomial 
algorithms) [11] compete against TCP. The latter behavior is illustrated in Figure 11. The figure plots 
congestion window sizes of one selected flow implementing the AIMD scheme (highly oscillatory curve) 
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vs. the congestion window sizes of a selected flow implementing the binomial scheme (IIAD) [11]. The 
congestion window measures the number of packets in transit in the network. Larger congestion window 
curves indicate higher throughput for that flow.  If the curves are far apart, it indicates that the distribution 
of throughputs is unfair. 
 
Without our randomization enhancement, the IIAD scheme (despite its nice property of lower volatility) 
is unfair to TCP AIMD scheme. This is because the IIAD window curve is consistently larger than the 
corresponding AIMD congestion window curve.  Figure 12 shows that once the randomization is added, 
the scheme competes fairly with TCP AIMD, i.e., the curves are coincident.  We have tested the 
performance of this randomization in several other scenarios and it almost consistently performs better 
than the non-randomized case.  This suggests that we could use a TCP friendly/compatible congestion 
control scheme (which has low volatility) with randomization introduced as the basis of video-
transmission over the Internet.  Future work would closely integrate this congestion management strategy 
with coding/error concealment schemes at the application layer. 
 

 
 

Fig. 11: AIMD v/s binomial scheme (IIAD), no randomization 
 
 

 
 

Fig. 12: AIMD v/s binomial scheme (IIAD), with randomization 
 



 18

 
 

6. Packet Loss Behavior and Integrated Source-Buffer Management 
 
Besides the fairness characteristics, we examined the packet loss behavior of congestion control schemes. 
A key to providing reliable video transmission over lossy packet networks is the understanding of the 
mechanisms causing the packet loss, and points in the network where the loss occurs. Typically, the finite 
size of internal router buffers is quoted as the main cause of network packet loss. However, in a real-time 
transmission of high-bandwidth content such as video this is no longer the case, as illustrated below. 
 
A typical model for video transmission over wired networks is shown in Figure 13. A server application 
sends the video data (solid lines) over the Internet to the client application, and receives feedback control 
information (dashed lines) from the client. This feedback information typically includes the estimates of 
the round-trip time (RTT), packet loss, etc. In this model, the “network” is considered to be everything 
between the server application and the client application. 
 
 

 
 

Fig. 13: A simple model for network video transmission 
 
 
A more realistic model is shown in Figure 14, which also accounts for congestion control modules at the 
server and the client. These modules monitor the conditions on the network along the transmission path 
and regulate the transmission rate so that potential congestion situations can be quickly resolved. In this 
case, the “network” is everything between the two congestion control modules.  
 
 

 
 

Fig. 14: A model for network video transmission involving congestion control 
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Figure 15 shows the comparison between the “network” loss in the two models illustrated above. The plot 
was obtained by measuring the “network” loss versus the number of flows transmitted through a single 
bottleneck. The figure shows that, as the number of flows increases, the overall loss between the 
applications increases significantly (as expected), but the loss between the congestion control modules 
remains fairly low – a few percent. Hence, most of the loss is caused by congestion control itself, i.e. at 
the source of transmission.  
 
In other words, with congestion control, the surprising observation is that the packet loss rate within the 
network is fairly small even for large degrees of multiplexing. This is because the congestion control 
algorithm uses loss merely as a mechanism to detect congestion and reduce the source rates. As a result 
the key overload point is at the source itself! If the source coder sends at a rate faster than that allowed by 
the congestion control scheme, a backlog builds at the source, and once buffers are full, packets are lost 
more often at the source than in the network! Packets are also dropped at the receiver if they do not arrive 
in time for the playback.  
 
In a typical scenario, the congestion control mechanism drops the packets at random, which makes the 
loss at the receiver appear to be random.  However, if the congestion control is done in an intelligent way 
so that the packets dropped are less important for the application than the transmitted ones, performance 
can be improved.  Scalable video coders can be very useful in conjunction with intelligent congestion 
control, since their bit streams can be easily manipulated to achieve different trade-offs between 
transmission rate, quality, frame rate and resolution. 
 
 

 
Fig. 15: Comparison of network loss for the models from Figures 13 and 14 

 
 
This observation presents a clear opportunity to manage the allocation of packet losses among various 
layers of the encoded video stream. In particular, since higher layers are less important than lower layers, 
they can be dropped first, if dropping is necessary. We developed a simple source-buffer management 
strategy based upon this observation as illustrated in Figure 16.  
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Fig. 16: an illustration of source-buffer management 
 
 
A simple first-in-first-out buffer is used at the source. Packets enter the buffer based upon the output of 
the video encoder. The buffer management algorithm makes a decision whether to accept the packet or 
not. Packets are clocked out of the buffer based upon the rate set by the end-to-end congestion control 
scheme. In [12] we proposed one such integrated scheme for end-to-end congestion control.  We tested 
the scheme with two video coders: our robust frame-rate scalable subband/wavelet video coder from [19] 
and the recently developed international standard video coder H.26L.  Video is encoded into packets that 
are then passed on to the transmission buffer, along with their priority information.  The priority of each 
packet is related to its corresponding frame rate.  In the case of our subband/wavelet coder, the priority of 
a packet is determined by its temporal scalability layer, so that packets corresponding to enhancement 
layers for the highest frame rate have the lowest priority, while those corresponding lower frame rates 
have the higher priorities.  In the case of the H.26L coder, B-packets have the lowest priority, followed by 
P-packets and I-packets.  The transmission buffer regulates the transmission rate.   
 
Since both the output and input rates may vary, we use a threshold at half the buffer size to trigger the 
operation of the buffer management scheme. Once the queue grows larger than the threshold, the 
difference between average input and output rates is viewed as the target overall packet-loss rate that has 
to be allocated. Given the average arrival rates of various layers, the buffer management scheme allocates 
a loss probability for each layer starting from layer 5, such that the weighted sum of loss probabilities 
(weighted by their fraction of arrival rates) equals the target overall packet-loss rate. When a packet 
arrives, and the queue is above this threshold, the appropriate loss probability is applied depending upon 
the layer to which the packet belongs and the packet may be dropped. Essentially the scheme tries to 
allocate the losses as far as possible to the higher layers before affecting the lower layers. 
 
The buffer management mechanism effectively performs congestion control and drops packets at the 
onset of congestion.  Lowest priority packets are dropped first, followed by packets of the next higher 
priority, and so on.  In this way the receiver is more likely to receive a high-quality low frame-rate 
version of the video than a low-quality high frame-rate version.  Hence, at the receiver side, the displayed 
frame rate is adjusted based on the overall loss, so that visual quality is maximized.  The remaining loss in 
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the network (i.e. the loss caused by the overflow at internal router buffers) is handled by error 
concealment at the receiver.  
 
In our experiments we used the Football test sequence (SIF resolution, 30 fps) encoded with our  
subband/wavelet coder, and the Flower Garden sequence (SIF resolution, 30 fps) encoded with the H.26L 
coder.  Both sequences were encoded at a total bit rate of 1.7 Mbps.  We tested the scheme for two 
scenarios:  
 

(1) five sources transmitting through a single-bottleneck network, and  
(2) eight sources transmitting through a multiple bottleneck network.   

 
The results are shown in Tables 4 and 5, respectively.  We compare the average PSNR of the received 
video with the proposed intelligent Buffer Management and Frame-rate Adjustment (BM+FA) scheme, 
and without it.  As can be seen from the results, significant PSNR gains are achieved with the proposed 
scheme.  Subjective quality is also significantly improved.  Sample video clips may be found at our site 
[14]. 
 
 
 

Sequence Bottleneck bandwidth 
(Mbps) 

Avg. PSNR (dB) 
without BM+FA 

Avg. PSNR (dB) 
with BM+FA Gain (dB)

Football 7.5 22.1 28.4 +6.3 
Football 6 18.4 24.8 +6.4 
Flower Garden 7.5 12.7 29.3 +16.6 
Flower Garden 6 10.2 28.9 +18.7 

 
Table 4: Average PSNR results for a single-bottleneck network 

 
 
 

Sequence Avg. PSNR (dB) 
without BM+FA 

Avg. PSNR (dB) 
with BM+FA Gain (dB) 

Football 18.5 27.9 +9.4 
Flower Garden 17.1 32.0 +14.9 

 
Table 5: Average PSNR results for a multiple-bottleneck network 

 
 
The proposed buffer management scheme may be thought of as a mechanism for concentrating the loss in 
the less important layers of the video, i.e. for providing unequal loss protection (ULP).  A similar effect 
can be achieved by using forward error correction (FEC) codes for ULP.  This raises the question of 
which method is better.  To this end, we also compared our proposed buffer management scheme with the 
concatenated multiple description (MD) coding scheme from [18], which uses Reed-Solomon codes for 
ULP.  Comparison was made on the Football test sequence encoded with our subband/wavelet coder, as 
above.  The FEC was designed for a binary erasure channel with loss probability and bandwidth matched 
to the two cases in Table 4.  The frame rate of the received video is adjusted as in the BM+FA case 
explained above.  As can be seen from the results shown in Table 6, both methods for providing ULP can 
significantly improve the performance over the case when ULP is not used.  Also, in addition to being 
computationally simpler, it seems that our BM+FA method works slightly better than FEC+FA. The 
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reason for this is suspected to be the fact that in the FEC+FA case the packet loss is random, while in the 
BM+FA case most of the loss is deterministic rather than random.  
 
 

Bottleneck bandwidth 
(Mbps) 

Avg. PSNR (dB) 
without ULP 

Avg. PSNR (dB) 
with FEC+FA 

Avg. PSNR (dB) 
with BM+FA 

7.5 22.1 27.4 28.4 
6 18.4 22.7 24.8 

 
Table 6: Comparison of two different ULP schemes 

 
 

6.1 Computational complexity of BM-FA and FEC-FA 
 
The BM-FA strategy is computationally very simple. All that is required is to assign a drop probability 
for each layer of encoded video. For the greedy assignment [12], drop probabilities can be computed in 
closed form, so the complexity of the algorithm is O(Nl), where Nl is the number of layers. Let N be the 
number of packets in a coding unit (e.g. a GOP). Since there is at least one packet per layer in the frame-
rate scalability case, we have Nl ≤ N, so finally the complexity of the drop probability assignment in BM-
FA is at most O(N). On the other hand, the fastest known algorithm for FEC assignment [17] in FEC-FA 
has the complexity O(NL), where L is the size of the packet in symbols (typically Bytes). For Internet 
transmission where large packets are preferred (e.g. L = 500 Bytes), one usually has N ≤ L in a typical 
coding unit. Both algorithms need to execute their assignments whenever channel conditions change 
sufficiently, so the frequency of their execution is expected to be the same.  
 
Consider an example of a video encoded at 1.5 Mbps with a GOP size of 16 frames. In this case we have 
Nl = 5 temporal scalability layers.  With a packet size L = 500 Bytes, we have about N = 200 packets per 
GOP.  Now, the FEC assignment in [17] consists of two parts: the first part is an O(N) algorithm to find 
an initial guess to the solution (the “rate-optimal solution” in [17]); the second part is a sequence of 
iterative improvements to this solution, with the overall complexity O(NL).  In the worst case, the second 
part requires 2L(N − 1) + 2 = 199002 multiplications, the same number of additions, and L(N − 1) = 
99500 comparisons.  On the other hand, the probability assignment in [12] requires in the worst case 2Nl 
= 10 multiplications, the same number of additions, and also the same number of comparisons. 
 
Figure 17 shows additional simulation results illustrating the effect of the source-buffer management 
scheme, when different congestion-control schemes are used. Consider Figure 17a, which shows the loss 
probabilities for various layers with and without buffer management, where Randomized AIMD is the 
congestion control scheme used.  In this particular scenario, the per-flow average rate (after congestion 
control) is about 870 kbps and about 30-40 kbps of information has to be dropped, i.e., a target overall 
loss rate of 4%. Observe that the distribution of loss probabilities is substantially skewed to the right (i.e. 
the higher layers) with source-buffer management. This is exactly what we want, which would translate 
into higher PSNR and perceptual video quality upon playback, albeit at a reduced frame rate. 
 
Figure 17b shows a similar scenario, but the per-flow rates are much lower, i.e. the target overall loss rate 
is between 40-50%!  Now, under such high loss conditions the impact of the source-buffer management is 
even greater.  Observe that without buffer management, there is not much skew in the distribution of loss 
rates across layers, but with the buffer management the losses are largely allocated only to the higher 
layers.  
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Figure 17c and d repeat this experiment using Randomized IIAD (a binomial scheme) that displays lower 
volatility of per-flow rates.  Observe that the benefits of source buffer management are much higher in 
this case (compared to Figures 17a and b) because the lower volatility of the per-flow rates allows better 
short-term estimation of target loss rates and allocation of loss rates to different layers.  As a result, with 
IIAD and source buffer management, the lower layers are allocated close to a 0% loss rate, and all the 
loss is concentrated in the higher layers.  
 
This feature is displayed again in Figures 17e and f where the source-buffer management histograms for 
AIMD and IIAD are directly compared.  Figures 17g and h show the queuing behavior (at the source 
queue, which is managed) for the two schemes: IIAD and AIMD.  The AIMD curves show substantial 
oscillation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17: Simulation Results: Source Buffer Management + Congestion Control Schemes 
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Therefore we conclude that large per-flow rate volatility is bad for streaming video, and that source-buffer 
management can dramatically improve performance.  Again there is the need for scalable coding to be 
able to rapidly respond to the network conditions. 
 

 

7.  Motion compensated error concealment for MC-EZBC video 
 
Although different forms of ULP may reduce the probability of loss of important video data, they cannot 
eliminate such possibility. In the case of intelligent buffer control, the flow of video packets still 
encounters some loss within the network.  The FEC-based ULP is not immune to the loss of important 
video data either, especially in the case of mismatch between actual channel parameters and those used in 
the FEC code design.  In such cases it is beneficial that the decoder perform some form of error 
concealment on the corrupted part of the video data.  We demonstrated in  [25] that combining FEC and 
error concealment increases robustness of the system to channel parameter mismatch.  We have recently 
developed [27] a motion-compensated (MC) error concealment strategy for the Embedded Zero Block 
Coded (EZBC) [28] video.  The basic concept is shown in Figure 18 on the next page. 
 
This figure shows three groups of pictures (GOPs) of MC-EZBC, a motion-compensated subband/wavelet 
video coder, here with two levels of temporal decomposition.  The original or input frames are in the top 
level. Low temporal frequency frames are shown as solid lines, and high temporal frequency frames are 
shown as dashed lines.  Motion vectors are shown as solid arrows.  Suppose that GOP n is corrupted 
through the loss of spatial data (lowest temporal frequency frame and high temporal frequency frames), 
which constitute most of the data for a typical GOP.  In this example, forward motion compensation is 
used so that lowest temporal frequency frame is temporally aligned with (and looks similar to) the first 
frame in the GOP.  We therefore use the motion field and the last frame of GOP n−1 to estimate the 
lowest temporal frequency frame of GOP n, and then use the motion vectors of GOP n to recover the 
frames through motion compensated temporal synthesis.  Had backward motion compensation been used, 
the lowest temporal frequency frame would have been temporally aligned with the last frame of the GOP, 
so we would use the data from GOP n+1 for estimation.  
 
While it is commonly assumed that motion compensation makes a compressed video more fragile and 
hence less robust.  This example shows that a good motion field can add robustness too.  Motion fields 
that are used in scalable MCTF type coders must be good in order to perform well in frame-rate 
scalability.   This is because the MCTF actually filters along these temporal motion paths.  If they are not 
good, then the lower frame-rate video will suffer from artifacts.  So a well operating MCTF type coder 
will have this more reliable type of motion field. 
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. . .. . .

GOP n–1 GOP n GOP n+1

 
 

Fig. 18: Three consecutive GOPs of an MC subband/wavelet video coder 
 
 
The method relies on the availability of motion vectors from the corrupted GOP.  However, this is not a 
very hard requirement to satisfy, since motion vectors typically constitute a relatively small portion of the 
GOP data (10% − 20%).  Hence, they may be heavily protected for transmission, or subject to re-
transmission as needed. The scalable coders based on MCTF, such as MC-EZBC, have a much higher 
quality motion field than do typical MPEG hybrid coders, and this feature is used to advantage here. 
 
We found that this type of error concealment significantly improves the quality of corrupted GOPs. The 
method works reasonably well for sequences with moderate motion content.  Some PSNR results are 
shown in Table 7 for Mobile calendar sequence (SIF resolution, 30 fps) and Foreman sequence (CIF 
resolution, 30 fps).  Both were encoded at 1 Mbps and in both cases they were “corrupted” by decoding 
the second GOP at a very low rate of about 50 kbps.  Visual performance is illustrated in Figure 19 for the 
Mobile calendar sequence. Corresponding video clips may be found at the site [29].  A journal article on 
this work has been subsequently completed and submitted [40]. 
 
 
 
 

Sequence No concealment MC error concealment Gain 
Mobile Calendar 13.4 19.5 +6.1 
Foreman 14.7 27.4 +12.7

 
 

Table 7: PSNR results (in dB) for MC error concealment of corrupted GOPs. 
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Fig. 19: Frames without error concealment (left) and with MC error concealment (right) 
 

8. Hybrid video streaming/downloading 
 
Video streaming over the current best-effort Internet is challenging due to factors such as the required 
high bit rate, delay, and loss sensitivity of video data.  The traditional client/server based video streaming 
structure may suffer from video quality degradation when the network is congested.  With the pervasive 
deployment of computers and networks, more and more resources (computation, bandwidth, and storage) 
are available over the Internet.  How to efficiently use these resources to assist video streaming is a 
challenging problem, also due to the dynamic and heterogeneous characteristics of the supplying peers.  
Our proposed hybrid video downloading/streaming (HDS) architecture is shown as Figure 20.  The HDS 
scheme efficiently integrates a traditional client/server based video streaming system (streaming mode) 
and a peer-to-peer based media data distribution system (downloading mode), in order to reduce the 
server load and increase the availability of video data on the receiver side.  In our hybrid architecture, the 
two modes complement each other.  To simplify the description, we outline our scheme with one video 
server, one “supplying” peer (i.e. with cached content), one “requesting” peer, and constant bit-rate 
(CBR) video.   
 
 
 

                          Server  
   
 
          :   Supplying peers.             Requesting peers:  
 

Fig. 20: Hybrid video downloading/streaming architecture 

Peer-to-
peer

Streami

Downloading
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The building blocks of our HDS system include:  
 

(1) a receiver-driven coordination control scheme (RDCC) and a memory disk cooperative 
buffering (MDB) scheme at requesting peer;  

(2) a scheduler at the video server; and 
(3) a scheduler at the supplying peer.   

 
These building blocks efficiently cooperate to reduce the server load and maximize the availability of 
video content on the receiver side. 
 
 
 
 
 
 
 
 
 
 
 
 
  

Fig. 21: HDS Timing behavior diagram 
 
 
 
Whenever a receiver (requesting peer) decides to watch a video clip, it first sends out a request to the 
video server.  The video server can be a traditional video server or a content distribution network (CDN) 
server.  In the meantime, the requesting peer performs a content lookup service on a peer-to-peer network, 
such as Chord, to find the supplying peers who currently have the requested video content.  After the 
receiver gets the video profile from the server and the addresses of the supplying peers from the network, 
it analyzes the video content according to the video profile and segments the video content into N slices as 
seen in Figure 21 (upper subfigure).  We define a slice as a contiguous segment of video data in a video 
bit stream; one slice may include several video frames. The receiver runs the proposed RDCC algorithm 
to coordinate downloading and streaming modes described in Figure 21 (bottom subfigure).  The RDCC 
algorithm is the key part of the overall HDS scheme.  It computes the availability of the video content in 
the receiver buffer, estimates the available link bandwidths, and coordinates downloading and streaming 
modes.  Figure 22 shows the server load using our HDS scheme, which is significantly reduced.   A 
conference paper has been published on this work [30]. 
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Fig. 22: (a) top left, buffer occupation; (b) top right, (c) bottom left, (d) bottom right: server load in 
different available bandwidth  (The test video is Foreman, QCIF format, H.263+ CBR encoded, average 
bit rate is at B = 128 kbps. The length of the sequence is 81 seconds. We define the server load as “1” if 
the server sends video at 128 kbps and as “0.5” at 64 kbps) 
 
 

9.   Interaction with MPEG on Multimedia Testbed 
 
In this section we describe our MC-EZBC coding results [32] and the details of experiments as requested 
in Annex D of the MPEG call for evidence [34] on scalable video coding.  In particular we look at Test 2 
of this call, which involved simulation on their multimedia test bed [33].  The purpose of the test was to 
determine how various coding algorithms can respond to variable network bandwidth in a repeatable test 
environment. 
 
Our submitted MC-EZBC bit stream consisted of two portions: 
 
1. Initial non-scalable portion containing headers and motion vectors – for the sequences in Test 2 this 

portion takes 40 – 130 kbps. 

2. A fully embedded portion containing progressively coded subband/wavelet coefficients. 
 
Since the second portion of the bit stream is fully embedded, we were able to maintain the bit rates at 
virtually exact values as required. For example, for the target rate of 1024 kbps, the actual rate turns out 
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to be 1024.0575 kbps, within 0.006% of the target; for the target rate of 256 kbps, the actual rate turns out 
to be 256.0575 kbps, within 0.03% of the target. 
 
We used a GOP size of 32 frames, which, at 30 fps translates to 1.067 seconds. In a sequence of 900 
frames, there are 28 GOPs of size 32, and the last GOP has 4 frames. 
 
Encoding and decoding delay are both equal to 1 GOP, which in our case is 32 frames. For each 
sequence, encoding takes about 3 hours on a 2.4 GHz Pentium 4 machine with 512 MB of RAM under 
Windows XP. Decoding takes about 10 minutes. 
 

Algorithm Complexity 
 
Motion estimation is done through hierarchical variable-size block matching (HVSBM), with block sizes 
varying between 64×64 and 4×4. The search range for block matching is −10 to +10 at the top level of the 
temporal pyramid, and it approximately doubles for each temporal level down. Motion estimation is bi-
directional, using one previous reference frame and one future reference frame. For a given block, if a 
good match is not found in the future frame, we search the past frame, and the better of the two matches is 
chosen as the reference block. 
 
Scene changes are detected using the fraction of unconnected pixels – if there are too many unconnected 
pixels, MCTF is not performed on that pair of frames and a scene change is declared. The fraction of 
unconnected pixels needed to declare a scene change was set to 0.3, except for the sixteenth and twentieth 
GOP of MadCyclist (frames 481 – 512 and 609 – 640, respectively), where it was set to 0.2. We found 
that compared to the original threshold value of 0.3, the new setting of 0.2 in these segments improved the 
visual performance by removing the artifacts of block-based motion compensation, but on the other hand 
it lowered the PSNR in these segments by about 0.5 dB. 
 
Coding of one GOP requires that all frames of the GOP be in the memory. The amount of memory (in 
bytes) needed for storage of YUV 4:2:0 data is 

1.5 × |GOP| × sizeof(float) × frame_width × frame_height, 

where |GOP| is the number of frames in a GOP, and sizeof(float) is the number of bytes in a floating-point 
number, in our case 4.  
 
The only non-scalable portion of the bit stream is the initial portion containing the header information 
(frame size, frame rate, etc.) and motion vectors. For the sequences in Test 2, this non-scalable part is 
worth 40 - 130 kbps, depending on the complexity of the motion. The remaining part of the bit stream is 
fully embedded, and decoding can stop at any point. 
 
To make as much use of the test bed functionalities developed for MPEG-4 FGS as possible, we decided 
to split the MC-EZBC bit stream into two layers:  
 
• Base Layer (BL), which contains the non-scalable portion of the bit stream (headers and motion 

vectors), and 
• Enhancement Layer (EL), which contains the scalable portion of the bit stream (progressively 

encoded subband/wavelet coefficients). 
 
In accordance with the strategy used in MPEG-4 FGS streaming, re-transmissions are used for BL, but 
not for EL. For the sequences in Test 2, BL takes 40 - 130 kbps, depending on the motion complexity. 
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We use the original rate adaptation provided in the test bed by the MPEG testbed Streamer object. To 
perform rate adaptation, it is essential to assign a time stamp to each application packet. Rate adaptation is 
then performed by the Streamer based on the application packet size and its time stamp. However, in a 
temporal pyramid used in MC-EZBC, data may correspond to different time scales and need not be 
localized in time. This section explains how we assign time stamps to MC-EZBC data. 
 
At the start of a streaming session, time stamps for both BL and EL are initialized to zero. Recall that BL, 
apart from a small header, contains mostly motion vector (MV) fields. If there are |GOP| frames in a 
GOP, there will be |GOP|−1 MV fields in that GOP: |GOP|/2 at the top level of the temporal pyramid, 
|GOP|/4 at the next temporal level down, and so on, until we get to a single MV field at the bottom. 
Hence, in every GOP the number of MV fields is one less than the number of frames. We have a running 
MV field counter whose function is similar to the existing m_uiFrameCount counter in the 
MediaDatabase object - it counts the MV fields that have been processed (packetized and sent). This 
counter is incremented by one at the start of each GOP, to account for the difference between the number 
of frames and the number of MV fields in a GOP, and it is also incremented by one for each processed 
MV field. Analogously to the FGS case, when the counter value becomes equal to the frame rate specified 
by m_uiFrameRate, meaning that one second worth of data has been processed, the time stamp is 
incremented and the counter is reset to zero. The process repeats until the end of the streaming session. 
 
In the EL, time stamps are assigned based on the number of bytes processed. If the EL for a given GOP 
has N bytes, then on average each frame is worth N/|GOP| bytes. The counter for EL increments by one 
for each chunk of N/|GOP| bytes processed. As above, when the counter becomes equal to the frame rate, 
the time stamp is incremented and the counter is reset to zero. The process repeats until the end of the 
streaming session. 

9.1 Results 
 
This section contains the results of our experiments with the MC-EZBC coder. We report three sets of 
results in this section: constant bit rate results, “ideal” streaming results, and test bed streaming results. 
All the results are reported in terms of the Y-component PSNR (denoted PSNR_Y) and the Mean PSNR, 
defined as 

Mean PSNR = (4×PSNR_Y + PSNR_U + PSNR_V)/6. 
 

Constant Bit-Rate Results 
 
For each of the sequences of Test 2, the constant bit rate (CBR) results are compiled from four streams 
with the following rates: 256 kbps, 512 kbps, 768 kbps and 1024 kbps. These are summarized in Tables 8 
and 9. 
 

Sequence Coder 256 kbps 512 kbps 768 kbps 1024 kbps
MPEG-4 FGS anchor 33.90 34.79 35.66 36.40 BigShips MC-EZBC 35.28 38.66 40.66 42.12 
MPEG-4 FGS anchor 32.95 34.04 35.14 36.11 Crew MC-EZBC 33.78 36.82 38.71 40.13 
MPEG-4 FGS anchor 26.26 27.40 28.55 29.61 MadCyclist MC-EZBC 26.75 30.31 32.30 33.86 

Table 8:  PSNR_Y in dB. 
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Sequence Coder 256 kbps 512 kbps 768 kbps 1024 kbps
MPEG-4 FGS anchor 36.02 36.73 37.43 38.05 BigShips MC-EZBC 37.56 40.97 42.86 44.22 
MPEG-4 FGS anchor 34.89 35.83 36.79 37.65 Crew MC-EZBC 35.43 38.34 40.08 41.38 
MPEG-4 FGS anchor 29.02 29.92 30.89 31.79 MadCyclist MC-EZBC 29.27 32.50 34.28 35.67 

Table 9:  Mean PSNR in dB. 

 

 “Ideal” Streaming Results 
 
“Ideal” streaming refers to the idealized situation where the encoder/server has the knowledge of the 
future channel conditions (available bit rate) ahead of time. In this case it is assumed that the sending rate 
is maintained exactly at the level provided by the network, and there are no losses in the network. To 
obtain the results for “ideal” streaming, we pull the appropriate segments from the CBR streams in the 
previous section: for the initial 5 seconds we use a 1024 kbps stream, for the next 5 seconds we use the 
768 kbps stream, and so on. The PSNR results for these segments are then concatenated to produce the 
result for “ideal” streaming. Average values of PSNR_Y and Mean PSNR are shown in Tables 10 and 11, 
respectively. 
 
 
 

Sequence MPEG4-FGS anchor MC-EZBC

BigShips 
35.16 39.30 

Crew 
34.48 37.63 

MadCyclist
27.79 30.99 

Table 10:  PSNR_Y in dB. 

 
 

Sequence MPEG4-FGS anchor MC-EZBC

BigShips 
37.02 41.49 

Crew 
36.17 39.02 

MadCyclist
30.26 33.09 

Table 11:  Mean PSNR in dB. 
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Actual Test Bed Streaming Results 
 
 
For each sequence we used one MC-EZBC stream at 1024 kbps at the server. This rate corresponds to the 
maximum transmission rate provided by the network profile. The network profile is as recommended by 
the call for evidence: “Bit-rates are changing each 5s from 1024 Kbps to 768 Kbps, 512 Kbps, 256 Kbps, 
512 Kbps, and 768 Kbps.” 
 
Table 12 contains the average PSNR_Y of decoded videos. Frame-by-frame PSNR_Y is plotted in Figs. 
23a-c. The results in terms of the Mean PSNR are shown in Table 13 and Figs. 23d-f. 
 
 
 

Sequence MPEG4-FGS anchor MC-EZBC

BigShips 
35.18 37.84 

Crew 
34.44 36.29 

MadCyclist
27.87 29.44 

 

Table 12:  PSNR_Y in dB. 

 
 

Sequence MPEG4-FGS anchor MC-EZBC

BigShips 
37.04 40.05 

Crew 
36.13 37.77 

MadCyclist
30.32 31.68 

 

Table 13:  Mean PSNR in dB. 
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Figure 23a:  PSNR_Y in dB for BigShips. 
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Figure 13b:  PSNR_Y in dB for Crew. 
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Figure 23c:  PSNR_Y in dB for MadCyclist. 
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Figure 23d:  Mean PSNR in dB for BigShips. 
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Figure 23e:  Mean PSNR in dB for Crew. 
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Figure 23f:  Mean PSNR in dB for MadCyclist. 
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10. Network Path Aggregation  
 
In this section we present an efficient multiplexing and error control system to improve the streaming 
video performance over path aggregates. While providing the application with increased aggregate 
bandwidth, the scheme reduces the performance degradation due to high path latencies and loss rates. The 
reduction in effective loss and delay is achieved by smart multiplexing and by exploiting the high latency 
paths to the user’s advantage. A novel out-of-sequence transmission algorithm utilizes the higher latency 
paths to transfer suitable frames from within the transmit buffer. We also present an FEC strategy for our 
scheme that decouples the transmission of error correction frames from the associated data. This provides 
protection against correlated losses. Our scheme, while not completely optimized, provides high gains at a 
considerably lower complexity compared to other approaches.  
 
Multimedia transmission over the Internet has gathered considerable interest in recent years. Apart from 
the unreliability of the best-effort Internet, the limited bandwidth and path latencies also pose major 
hurdles to efficient multimedia transport.  Previous studies have shown that the use of path aggregates can 
overcome the bandwidth deficiency [35-38].  It is important to consider the effect of a path diversity 
scheme on performance with respect to a change in degree of diversity (path loss, delay, bandwidth, 
number of paths etc.).  Multimedia transmission is highly susceptible to path loss characteristics and 
latencies.  Thus, it is important that a path aggregation scheme not be limited to efficient bandwidth 
aggregation but must also optimize the end user experience.  We achieve this by jointly reducing the 
effective loss rate and latency/jitter in addition to maximizing transmission rate.  Our scheme, although 
not optimal, increases the video performance by an order of magnitude while keeping the implementation 
complexity much lower, with respect to an optimized approach [38].   
 
We present a novel partitioning scheme that takes advantage of unequal packetization of the video and 
also uses an out of sequence transmission scheme to utilize high latency paths.  Conventionally, the 
transport level optimizations have been decoupled from the application level information.  Our scheme 
demonstrates that better streaming performance is achieved by using a content aware transport scheme. 
To deal with the short-term temporal dynamism of the best-effort path characteristics, we use a TCP 
friendly congestion response scheme on every path that is suited to multimedia delivery [39].  We refer to 
our scheme as Smart Multi-path Capacity Aggregation (SMCA).  An extended version of SMCA utilizes 
the path loss information to generate FEC and to decouple the FEC packets from the associated video 
packets over the path aggregates. 
  
10.1 Details 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 24 illustration of SMCA system architecture 
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The SMCA architecture is represented in Fig. 24.  The sender transmit buffer is filled by the application 
with video packets in a serial fashion.  The packets corresponding to the frame to be transmitted/decoded 
earliest occupy the head of the buffer.  The SMCA scheme is used to choose frames for transmission from 
the transmitter buffer depending on both the content information and the network feedback.  There are 
two main stages in mapping the video frames to the appropriate paths.  The first stage assigns individual 
GOPs to a set of paths under delay constraints. T he delay reduction unit in Fig. 24 represents this stage.  
The second stage protects each frame with FEC and then maps each video and redundancy frame to a path 
using the content information.  The loss reduction unit in the figure represents this second stage. The 
delay reduction unit is so named because it helps minimize effective delay by using out-of-sequence 
transmissions on high latency paths.  Similarly, content based multiplexing of frames and error correction 
reduces the impact due to the network losses (hence the name loss reduction unit).  
 
Delay Reduction Unit: 
The delay reduction unit minimizes the effective delay experienced by the video data by taking advantage 
of available high latency paths. These high latency paths, which otherwise are not suitable for video 
transmission, are used to transmit frames that are to be decoded later in time.  The delay reduction unit 
ranks the paths according to latency and selects appropriate data suitable to be transmitted on each path.  
The process results in a direct increase in the available bandwidth for the application.  Some frames 
higher up in the transmit buffer may be transmitted before the frames preceding them due to the 
suitability of available high latency links.  Thus a non-sequential transmission of video frames is realized 
that utilizes the normally unsuitable links to provide reduction in jitter and increase in the transmission 
rate. 
 
Loss Reduction Unit: 
The delay reduction unit associates each frame with a set of paths suitable for its transmission.  The loss 
reduction unit uses the frame content information and the path loss characteristics to determine the exact 
path a frame will be transmitted on.  The mapping of the frames to paths is based on heuristics.  Results 
show that the heuristic based loss reduction unit along with the delay reduction unit can achieve close to 
optimal performance at a much lower complexity.  Higher importance content is transmitted on the paths 
with low loss rates while the lesser important content is transmitted on paths with higher loss rates.  The 
loss reduction unit is integrated with an optional FEC module that unequally protects the video according 
to the current loss characteristics.  The FEC frames are decoupled from the associated data frames for 
transmission providing an additional degree of robustness to correlated network losses. 
 
10.2 Results 
 
Tables 14-16 show the gains in PSNR achieved by SMCA when compared with an opportunistic packet-
mapping scheme (OPMS)  and a completely optimized pruned tree (PT) packet multiplexing scheme [38]. 
The simulations were performed using the UC Berkeley ns-2 simulator.  The topology used consisted of 5 
independent network paths between the source and the receiver.  The paths were populated by the video 
traffic under consideration plus background data traffic.  We used the Flower Garden video test sequence 
in the simulations. The sequence was SIF resolution (352 x 240 pixels) at 30 fps.  The Flower Garden 
sequence was encoded using a standard H.26L encoder.  The GOP had 16 frames in the following order: 
IBBPBBPBBPBBPBBP.  The bit-rate was 1.7 Mbps and the average packet size was 700 Bytes. 
 
Table 14 presents the gains in PSNR achieved with a changing number of paths.  The substantial gain of 
more than 7 dB when the network resources are diversified among 5 paths shows that SMCA uses path 
diversity to the user’s advantage.  The total number of paths was varied from one path (n = 1) to five 
paths (n = 5) while keeping the aggregate bandwidth fixed at 1.3 Mbps, average loss probability fixed at 
0.1, and average path delay fixed at 30 ms. 
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The gains in performance with varying loss characteristics are presented in Table 15.  The average path 
delay was set at 30 ms.  All the PSNR values are averaged over 30 simulation runs.  We note that the 
SMCA scheme performs much better than the OPMS under conditions of high average path loss.  The 
gains in performance with varying delay characteristics are shown in Table 16. The average path loss 
probability was set at 0.1.  Again, all the PSNR values are averaged over 30 simulation runs.  We note 
that the SMCA scheme performs much better than the OPMS under conditions of high average delay.   
Under both conditions the performance of SMCA is comparable to the optimized PT approach, but 
SMCA achieves this performance at a much lower complexity. 
 

Num. Of 
Paths 

 
1 

 
2 

 
3 

 
4 

 
5 

PSNR 
(dB) 

 
20.98 

 
22.48 

 
25.42 

 
26.02 

 
28.04 

 
Table 14. Average PSNR variation with number of paths 

 
 

Avg. Loss Prob. SMCA 
PSNR(dB) 

PT 
PSNR(dB) 

OPMS 
PSNR(dB) 

0.05 29.32 31.82 26.06 
0.1 29.03 29.02 24.43 

0.35 26.32 26.86 18.21 
0.4 22.78 20.31 11.64 

 
Table 15. Gains with loss variation 

 
 

Avg. Delay 
(ms) 

SMCA 
PSNR(dB) 

PT 
PSNR(dB) 

OPMS 
PSNR(dB) 

30  30.12 31.83 27.96 
50 28.32 29.46 24.33 

100 25.12 24.21 19.19 
300 21.78 18.73 11.03 

 
Table 16.  Gains with delay variation 
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